Predictions for two-pion correlations for sqrt(s)=14 TeV proton-proton collisions Tom Humanic Ohio State University #### Outline of the talk - Introduction - Simple geometric model to give "baseline" predictions for HBT from pp@LHC - Reality check of model by comparing with Tevatron HBT experiment - Results of model calculations for sqrt(s)=14 TeV - Summary (work to appear in Phys. Rev. C, or see nucl-th/0612098v2) #### **CERN Large Hadron Collider (LHC)** - * Located in Switzerland and France 27 km circumference ring - * Maximum C. M. energies and luminosities of colliding beams: ``` proton + proton: 14 TeV @ 10³⁴ collisions/(sec*cm²) ``` lead + lead: 5.5 ATeV @ 10²⁷ collisions/(sec*cm²) - * First p-p beam for physics expected by Summer, 2008 First Pb-Pb beam by ~ end of 2009 (we hope!) - better have some interesting p-p physics to do while waiting for Pb-Pb: e.g. HBT, mini-BH, - * Will be the highest energy particle accelerator in the world! (Tevatron presently running at Fermilab has a maximum C.M. energy for p-p of 2 TeV) # What do we expect to see from pion HBT with p+p @ LHC? Jet model for HBT with p+p @ FNAL/LHC Guy Paic and Piotr Skowronski J. Phys. G: Nucl. Part.. Phys. 31 (2005) Pion HBT with p+p @ STAR Zbigniew Chajecki QM05 Finds R increases as dN/dy increases, as seen In FNAL data #### Goals of the present work - Use a very simple model to make "baseline predictions" for pion HBT in pp@LHC --> differences between these predictions and LHC data could point to the presence of new physics - Calculate the 1-d invariant two-pion correlation function $C(Q_{inv})$, where $Q_{inv} = |p_1-p_2|$ and p_1 and p_2 are pions 4-momenta, to make the predictions simpler to compare with data - Include final-state hadronic rescattering effects since large hadronic multiplicites (e.g. > 300) are possible at the LHC -- concentrate on events with high multiplicity to enhance this effect - Do a reality check of the model by comparing results with a Tevatron HBT experiment (Experiment E735) --> if the model fails miserably here already, it's time for the junk pile! #### Simple geometric model for HBT from p+p * Assume all particles have the same proper time for hadronization, τ , so that the hadronization space-time for each particle is given by "causality", i.e. $$t_i = \tau E_i/m_i$$; $x_i = x_{oi} + \tau p_{xi}/p_i$; $y_i = y_{oi} + \tau p_{yi}/p_i$; $z_i = \tau p_{zi}/p_i$ (similar to Csorgo and Zimanyi, Nucl. Phys. A512 (1990) applied to e+-e-) * Take into account hadronic rescattering using a full Monte Carlo rescattering calculation #### Other details of the model.... - Use PYTHIA v.6326 to generate hadrons for 1.8 TeV p-pbar or 14 TeV p+p "minimum bias" events - "final" hadrons from PYTHIA to use: $\rightarrow \pi, K, N, \Delta, \Lambda, \omega, \rho, \phi, \eta, \eta$ " - Monte Carlo hadronic rescattering calculation: Let hadrons undergo strong binary collisions until the system gets so dilute (since it is expanding) that all collisions cease. --> σ(i,j) from Prakash, etc.. - Record the time, mass, position, and momentum of each hadron when it no longer scatters. freezout condition. - Calculate $C(Q_{inv}) \sim N_{real}(Q_{inv})/N_{back}(Q_{inv})$ by binning symmetrized pairs of pions assuming plane waves in N_{real} to put in HBT correlations (usual method). - Fit Gaussian (Tevatron) or more general function (LHC) to $C(Q_{inv})$ to extract parameters R and λ , or R, λ , B, and α : - $C(Q_{inv}) = 1 + \lambda \exp(-R^2Q_{inv}^2)$ or $C(Q_{inv}) = 1 + \lambda \cos(BQ_{inv}^2) \exp(-R^\alpha Q_{inv}^\alpha)$ - Carry out calcuations for several τ values to see effect on HBT -- expect the smaller values of τ to have the largest rescattering effects # How long does it take to collect a "reasonable" data sample of, for example, $\pi^-\pi^-$ pairs for events with total mult>300 in a detector at the LHC? #### Assumptions: - * reasonable data sample of $\pi^-\pi^-$ pairs for HBT: ~106 - * detector: ALICE ITS+TPC (~accept. 0.1<pT, -1<y<1; DAQ rate 100Hz) - * 1st-year LHC p-p luminosity @ 14 TeV: L~1030 cm-2 s-1 - * ~40% of charged particles reconstructed in an event are π -'s - From PYTHIA p-p minimum bias run @ 14 TeV - * $\sigma_{\text{total}} \sim 50 \text{ mb}$, $\sigma(\text{m}>300) = 0.1 \ \sigma_{\text{total}} \sim 5 \text{ mb}$ - * charged hadron multiplicity in ALICE acceptance for m>300: ~ 50/event - Result: - * events/sec= L σ (m>300) ~ 5000 > DAQ rate --> 100 events/sec - * $\pi^{-}\pi^{-}$ pairs obtained per event ~ $(0.4*50)^{2}/2 = 200 --> 20,000$ pairs/sec - --> running time to obtain 10⁶ pairs = 10⁶/20,000 = 50 seconds ~ 1 minute # Compare model predictions with Tevatron data as a reality check on the model - Compare with Experiment E735 which extracted ππ HBT @ sqrt(s)=1.8 TeV in p-pbar collisions using a spectrometer (T. Alexopoulos et al., Phys. Rev. D48,1931(1993)) - Make kinematic cuts on p_T and rapidity to simulate experimental acceptance in the model - Fit the Gaussian function to $C(Q_{inv})$ to extract R an λ from the model since this was the procedure used in the experiment - Compare model calculations with τ =0.1, 0.5 and 1.0 fm/c to experiment to see if the data favor one of them over the others ### η and p_T distributions from PYTHIA for p-pbar @ 1.8 TeV for 1) direct, 2) with "y-p_T hole", 3) hole+rescatt. (τ =0.1 fm/c) ## Sample model 2- π correlation functions for τ =0.1, 0.5, 1.0 fm/c for 1.8 TeV p-pbar ## Comparisons of Gaussian fit paramters between E735 and model for τ =0.1 fm/c ## Comparisons of Gaussian fit paramters between E735 and model for τ =0.5 fm/c ## Comparisons of Gaussian fit paramters between E735 and model for τ =1.0 fm/c # Summary of results for model comparison with Tevatron experiment - Model best describes the the p_T and multiplicity dependences of the E735 Gaussian HBT parameters for the case of τ =0.1 fm/c with rescattering turned on - Suggests that hadronization time short in these collisions, i.e. τ <<1 fm/c, and that significant hadronic rescattering effects are present #### Model predictions for LHC p-p collisions at 14 TeV - Make predictions for τ =0.1 and 0.5 fm/c cases - Employ same "y-p_T hole" method as used for Tevatron calculations - Fit more general function to $C(Q_{inv})$: (see Csorgo and Zimanyi) $C(Q_{inv}) = 1 + \lambda \cos(BQ_{inv}^2) \exp(-R^\alpha Q_{inv}^\alpha)$ where, - R = "size" parameter - λ = "strength" parameter - B = "oscillatory" parameter, B ~ τ for present model, normally not observed for cases where R>> τ since exp term dominates and quickly damps oscillations - α = "degree of function fall-off" parameter ## η and p_T distributions from PYTHIA for p-p @ 14 TeV for 1) direct and 2) hole+rescatt. (τ =0.1 fm/c) ### Sample model 2- π correlation functions for τ =0.1 fm/c for 14 TeV p-p with fit to general function ### Sample model 2- π correlation functions for τ =0.5 fm/c for 14 TeV p-p with fit to general function #### General fit function parameters versus p_T and multiplicity for model with τ =0.1 fm/c for 14 TeV p-p #### General fit function parameters versus p_T and multiplicity for model with τ =0.5 fm/c for 14 TeV p-p # Summary of general fit parameter behavior predicted by model for 14 TeV p-p - R -- largest variation for τ =0.1 fm/c case, can increase by 3x for increasing m and decrease by 3x for increasing p_T - λ -- weak dependencies on kinematical cuts which tend to be opposite those of R; λ<0.5 due to presence of longlived resonances - B -- tends to follow the behavior B $\sim \tau$, since noticeable baseline oscillations are seen for the τ =0.5 fm/c case - α -- similar kinematical dependencies as λ , tends to have values in range 0.7< α <1.5 for both τ =0.1 and 0.5 fm/c #### **Summary** - Within the context of this simple model, results from two-pion HBT @ Tevatron and LHC energies strongly depend on the hadronization proper time, τ - Comparison of the model with Tevatron data looks reasonable and favors a short hadronization time, τ~0.1 fm/c - Final-state hadronic rescattering effects appear to be observable for τ<0.5 fm/c in high-energy p-p and p-pbar collisions - Significant dependences of the HBT parameters on particle multiplicity and p_T bin are predicted by the model to be seen for LHC p-p collisions -- these are enhanced for short τ